GCE BIOLOGY - BY1

Mark Scheme - January 2013

Question			Marking details	
1.	(a)	(i)	Stage A – telophase; Stage C – metaphase;	2
			Stage C - Metaphase,	
		(ii)	Centromeres split/ divide;	2
			<u>Chromatids/ chromosomes</u> are being <u>pulled</u> to (opposite) poles;	
			(due to) contraction/ shortening of the spindle (fibres);	
	(b)	(i)	Interphase;	1
		(ii)	The (quantity of) DNA has <u>doubled</u> / (quantity of) DNA changes from 6 to 12; NOT increase	1
		(iii)	Meiosis; (correct spelling) (At the end of the cell cycle) the (quantity) of DNA has been halved (and halved again) / can describe with numbers /involves 2 (consecutive) divisions;	2
			Ignore reference to chromosomes Question 1 total	[8]

Question		Marking details	Marks Available	
2.	(a)	DNA	RNA]
		Double stranded	Single stranded	Max 3
		helical	Not helical	-
		Deoxyribose/ C ₅ H ₁₀ O ₄ / one	Ribose/ C ₅ H ₁₀ O ₅ / one more	
		less oxygen atom in pentose	oxygen atom in pentose	
		NOT deoxyribonucleic acid	NOT ribonucleic acid	
		Contains thymine	Contains uracil	<u>-</u>
		Not letters	Not letters	
		Can list all bases present	Can list all bases present	
		Only one type	3 types (mRNA, tRNA &	-
			rRNA)	
		(Relatively) long/ larger	(relatively) short/ smaller	-
		molecule	molecule	
	(b)	23% guanine therefore 23% cy	tosine;	2
		(54% made up of adenine and	thymine)	
		Adenine = 27(%);		
		Correct answer = 2 marks		
		Question 2 total		[5]

Question			Marking details	Marks Available
3.	(a)	(i)	Phagocytosis/ endocytosis;	2
			the (cell) membrane {invaginates/infolds/ surrounds/ wraps	
			around/ engulfs} (to form a vesicle (allow vacuole))around the	
			{food particle/ algae};	
		(ii)	Golgi {Body/apparatus};	1
		(iii)	Exocytosis;	1
	(b)	(i)	(Site of aerobic) respiration / production of ATP;	1
	(2)	(1)	NOT production of energy alone	'
		(ii)	Carry out {endo/exo/ phago}cytosis / synthesis of digestive	1
		()	enzymes/ movement/ form lysosomes;	
			Reject active transport unqualified	
			NOT digestion/ feeding	
	(c)		1.No nucleus/nuclear membrane/ DNA free in cytoplasm;	Max 3
			2. No membrane bound organelles / named example/ possess mesosome;	
			3. A loop of DNA / circular DNA/ ORA DNA {linear/ on	
			chromosome/ associated with histone};	
			4. Small <u>er</u> /70S ribosomes;	
			5. Cell wall; Reject reference to cellulose	
			6. Capsule/ flagellum/ plasmid;	
			NOT reference to size (can be neutral)	
			Question 3 Total	[9]

Question			Marking details		Marks Available
4.	(a)		Quaternary/ 4°;		1
	(b)	(i)	(Labelled) arrow in correct posi	tion;	1
		(ii)	COOH/ carboxyl/ carboxylic aci	d;	1
		(iii)	Disulphide {bond/ bridges} / ion hydrophobic interactions / Van NOT peptide / S-S (covalent –	der Waals; (Any 2)	1
	(c)		Mark points must be compare	ative	Max 2
			phospholipid	triglyceride	
			2 fatty acids	3 fatty acids;	
			phosphate (head)	do not contain a phosphate	
				(head)	
			polar/hydrophilic head and	non-polar/hydrophobic;	
			non-polar/hydrophobic tails		
	(d)	(i)	{Heads/ phosphates} are {hydro to/ in} the water; {Tails/ fatty acids} are {hydroph {repelled by/ above/ avoid} water NOT react/ dissolve with water		2
		(ii)	6.1(m ²);	ed in/ formed} a {bilayer/ double	2
			Question 4 Total		[10]

Question			Marking details	Marks Available
5.	(a)	(i)	Oxygen by (simple) diffusion; through the phospholipid (bilayer);	2
		(ii)	Phosphate ions by {facilitated diffusion/active transport}; through {carrier /channel}proteins/ protein pumps (active transport); (not channel proteins with active transport) NOT intrinsic Pass through hydrophilic pore; (not with active transport)	Max 2
	(b)	(i)	Active transport; (Between 0-30au) the concentration of phosphate ions is lower outside (the root)/higher inside (the root)/ lons are being taken up against a concentration gradient; With oxygen present (aerobic) respiration can occur; Providing {ATP/ energy} (for active transport)/ active transport needs {energy/ ATP};	1 Max 2
		(ii)	There are a {limited/fixed} number of {carriers/ proteins/ channels} (for phosphate ions) in the membrane; (The curve levels off/the rate of uptake becomes constant) when all of the {carriers/ channels/ proteins} are in use;	2
		(iii)	(Ions are being taken up by) <u>facilitated</u> diffusion; Uptake {only begins/ occurs} when the external concentration is high <u>er</u> than the concentration inside the root hair cells/ <u>down</u> a concentration gradient;	2
	(c)		They are a {component of/required to synthesise} {DNA/ RNA/ ATP/ NAD/ FAD/ NADP/ nucleotides/ nucleic acids};	1
			Question 5 Total	[12]

Question			Marking details	Marks Available
6.	(a)	(i)	Molecule of water (drawn with arrow towards the O atom of the glycosidic bond); NOT water going out Monosaccharides drawn with –OH groups in correct position on C1 and C4 (involved in bond);	2
		(ii)	Hydrolysis; NOT hydrolysation (ignore reference to acid)	1
		(iii)	Glycosidic;	1
		(iv)	Glucose and galactose; ignore alpha/ beta	1
	(b)	(i)	An <u>enzyme</u> that has been fixed to an <u>inert</u> {matrix/support/ substance};	1
		(ii)	The enzyme can easily be recovered/ reused;	Max 2
			The product is free from contamination;	
			Enzyme is {stable at / tolerates/ withstand} higher	
			temperatures/denatures at a higher temperature/ functions over a wide range of pH;	
			NOT wider range of temperature alone	
			Several enzymes with differing optima can be used at the	
			same time;	
			More control over the reaction/enzymes easily added or	
			removed/ can be used in a continuous process;	

[16]

Question		Marking details	Marks Available
(c)	(i)	Heat with Benedict's solution/reagent;	2
		NOT warm/ water bath/ ref to acid	
		Blue to{red/ orange/ green/ yellow/ brown};	
	(ii)	Instrument/equipment that can detect a <u>specific</u> molecule/metabolite (in a mixture of molecules/bodily fluid).	1
	(iii)	Any one from:	1
		The biosensor would give quantitative data/	
		it would detect {a particular product/glucose/galactose}/	
		Can detect even at {very low concentrations/ small volumes};	
(d)		 (The concentration of reducing sugars) would decrease; {Lactose/ substrate} concentration is lower (in the sour milk); Lactic acid lowers the pH; Enzyme would be inactivated/denatured; Hydrogen/ ionic bonds (maintaining the 3D shape) would break; This will change the shape/charge of the active site (of lactase); Fewer enzyme-substrate complexes would be formed/fewer successful collisions; Benedicts would remain {blue/ change to {orange/ yellow/ green/ brown}/ negative} 	Max 4
		, 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3	

Question 6 Total

Question		Marking details	Marks Available
7. (a)		Describe and explain the effect of inhibitors on enzyme action.	[10]
	A	Enzymes are globular proteins/biological catalysts;	
enzymes	В	Active site (of the enzyme) has a specific 3D/ tertiary shape;	
enzy	С	lower activation energy of a reaction;	
	D	Inhibitors reduce the rate of (an enzyme catalysed) reaction;	
	E	Competitive inhibitors;	
	F	Have a shape similar to the substrate/complementary to the active site; NOT same shape	
competitive	G	Fit/ bind into the active site;	
Com	Н	Prevent the substrate molecule entering the active site/block the active site;	
	I	Max. rate of reaction can be achieved at higher substrate concentrations/ Increasing the concentration of the substrate reduces the effect of the inhibitor; allow correctly labelled graph	
(J	Non-competitive inhibitors;	
	K	Bind to the allosteric site/site other than the active site;	
φ	L	Causes a change in the shape of the active site;	
etitiv	М	Substrate can no longer fit into the active site/ active site is no	
dwo		longer complementary;	
non-competitive	N	Fewer/ no enzyme-substrate complexes form/ fewer successful collisions;	
	0	Max. rate of reaction cannot be achieved/increasing the	
		concentration of the substrate has no effect on inhibition; allow	
		correctly labelled graph	

Question		Marking details	Marks Available
(b)		Describe the effects of placing animal and plant cells in	
		solutions of differing solute concentration.	
	Α	Osmosis is the (net) movement of water molecules down a water	
		potential gradient/from a higher water potential to a lower water potential;	
	В	through a partially/selectively permeable membrane;	
	С	Hypotonic solutions have a high <u>er</u> water potential than the	
		(cytoplasm of the) cells;	
	D	Water moves into the cells (by osmosis);	
	Е	Animal cells swell /burst/ref osmotic lysis; reject turgid	
	F	Plant cells the cytoplasm swells up/cell contents/plasma	
		membrane pushes against the cell wall;	
	G	(plant cells) becomes turgid/ ψ_p >0/cell wall prevents osmotic lysis;	
	Н	Hypertonic solutions have a lower water potential than the	
		(cytoplasm of the) cells;	
	I	Water moves out of the cells (by osmosis);	
	J	Animal cells shrink/crenated; reject flaccid	
	K	In plant cells the cytoplasm shrinks / the (plasma) membrane is	
		pulled away from the cell wall;	
	L	Plant cell becomes plasmolysed/ ψ_p =0;	
	М	Isotonic solutions have the same water potential as the cytoplasm	
		of the cell;	
	N	(In isotonic solutions) there is no net movement of water	
		molecules;	
	0	At inciniont placemolygic 500/ of the calls in a plant tipous will be	
	0	At incipient plasmolysis 50% of the cells in a plant tissue will be turgid and 50% will be plasmolysed;	
		targia ana 3070 wiii be piasmorysea,	